Electromagnetismo
· Definición
El electromagnetismo es una rama de la física que estudia y unifica los fenómenos eléctricos y magnéticos. Estos dos fenómenos se unen en una sola teoría, ideada por Faraday, y se resumen en cuatro ecuaciones vectoriales que relacionan campos eléctricos, campos magnéticos y sus respectivas fuentes, conocidas como las ecuaciones de Maxwell.
El electromagnetismo es una teoría de campos, es decir, las explicaciones y predicciones que provee se basan en magnitudes físicas cuya descripción matemática son campos vectoriales dependientes de la posición en el espacio y del tiempo. El electromagnetismo estudia los fenómenos físicos en los cuales intervienen cargas eléctricas en reposo y en movimiento, así como los relativos a los campos magnéticos y a sus efectos sobre diversas sustancias sólidas, líquidas y gaseosas.
El estudio del magnetismo se remonta a la observación de que “piedras” que se encuentras en la naturaleza (esto es, magnetita) atraen al hierro. Es posible establecer que todos aquellos fenómenos magnéticos cuando dos cargas están en movimiento, entre ellas surge una fuerza que se denomina fuerza magnética.· Antecedentes del electromagnetismo
La ciencia de la electricidad nació con la observación, conocida por Tales de Mileto el año 600 a.c. de que de un pedazo de ámbar frotado atrae pedacitos de paja. Cuando dos cargas eléctricas se encuentran en reposo, entre ellas existe una fuerza denominada electrostática.Estas dos ciencias se desarrollaron independientemente una de la otra hasta 1820, cuando
En 1820 el físico danés Hans Christian Oerted descubrió que entre el magnetismo y las cargas de la corriente eléctrica que fluye por un conductor existía una estrecha relación. |
Cuando el flujo de corriente eléctrica que circula a través del enrollado de cobre cesa, el magnetismo deberá desaparecer de inmediato, así como el efecto de atracción magnética que ejerce el núcleo de hierro sobre otros metales. Esto no siempre sucede así, porque depende en gran medida de las características del metal de hierro que se haya empleado como núcleo del electroimán, pues en algunos casos queda lo que se denomina "magnetismo remanente" por un tiempo más o menos prolongado después de haberse interrumpido totalmente el suministro de corriente eléctrica. |
|
Una parte de la historia del electromagnetismo se monta a los chinos que sugieren que el electromagnetismo fue conocido a principios del año 2000 A.C, otra parte de la historia se remonte a los antiguos griegos que observaron los fenómenos eléctricos y magnéticos posiblemente a principios del año 700 A.C. Para ello descubrieron que un pedazo de ámbar frotado se electrificaba y era capaz de atraer trozos de paja o plumas. La existencia de la fuerza magnética se conoció al observar que pedazos de roca natural llamada magnetita (Fe3 O4) atraen el hierro. (La palabra eléctrico proviene del vocablo griego para el ámbar, elecktron. La palabra magnética viene del nombre de un distrito central al norte de Grecia donde se descubrió, Magnesia.
En 1600, William Gilbert descubre que la electrificación no estaba limitada al ambarsino que este era un fenómeno general. Así, científicos electrificaron una variedad de objetos, incluyendo gallinas y personas. Experimentos realizados por charles Coulomb en 1785 confirmaron la ley inversa del cuadrado para la electricidad. Hasta principios del siglo XIX los científicos establecieron que la electricidad y el magnetismo son, en efecto, fenómenos relacionado1820 Hans Oersted descubre que una brújula sé deflecta cuando se coloco cerca de un circuito que lleve corriente eléctrica. En 1831, Michael Faraday, y simultáneamente, Joseph Heary, demuestran que, cuando un magneto o imán (o de manera equivalente, cuando el magneto se mueve cerca de un alambre), una corriente eléctrica se observa en el alambre. En 1873, James Clerk Maxwell usa estas observaciones y otros factores experimentales como base, y formula leyes del electromagnetismo que se conocen actualmente. (Electromagnetismo es el nombre dado a la combinación de los campos eléctrico y magnético.) Poco tiempo después (alrededor de 1888), Heinrich Hertz verifica las predicciones de Maxwell produciendo ondas electromagnéticas en el laboratorio. Esto fue seguido por desarrollos prácticos como la radio y la televisión. Las contribuciones de Maxwell a la ciencia del electromagnetismo fueron especialmente significativas debido a que las leyes formuladas por él son básicas para todas las formas de los fenómenos electromagnéticos. Su trabajo es comparable en importancia al descubrimiento de Newton con sus leyes del movimiento y la teoría de la gravitación. tra parte de la historia muestra a los antiguos griegos que no ignoraban la existencia de una piedra magnética capaz de atraer el hierro y habían comprobado que este metal se imantaba si se ponía en contacto con un imán. Varios siglos antes de nuestra era parece ser que los chinos empleaban ya la brújula, instrumento basado en las propiedades de la aguja imantada, que no llegó, sin embargo, a Europa hasta el siglo XV, cuando empezaron a utilizarla los navegantes en sus viajes exploratorios. El descubrimiento científico básico logrado por Edison (a pesar del hecho de que ese estableció casi 1100 patentes) mejoró del desarrollo de los sistemas de comunicación modernos (radio, telefonía, radar y tv). Durante el periodo que Edison se dedicaba a preparar la luz eléctrica, colocó un filamento metálico en una ampolla de vidrio e hizo el vacío en su interior (tubo vacío) con un segundo electrodo que estaba conectado al polo positivo de una batería. Descubrió que cuando hacía pasar una corriente a través del filamento y éste se calentaba y se ponía incandescente, un flujo de electricidad (electrones) pasaba a través del espacio vacío en el tubo al electrodo cargado positivamente (la placa) y volvía a la batería. Este fenómeno se llama efecto Edison, pero Edison no vio en su dispositivo posibilidades prácticas y no hizo nada con él excepto, patentarlo. Veinte años después, Fleming utilizó el efecto Edison para inventar un diodo rectificado, un dispositivo para convertir la corriente alterna en corriente directa. Este fue en esencia el tubo de vacío de dos elementos de Edison. Unos años más tarde, De forest agregó un tercer electrodo (una rejilla) al tubo de vacío de los electrodos de Edison. Este dispositivo hizo posible amplificar las energías de las ondas electromagnéticas extremadamente débiles (radiondas) que son emitidas por las señalas eran fortalecidas y reenviadas a mayor distancia, y pudieron entonces utilizarse los altavoces. Este fue el auténtico meollo de los sistemas de comunicación modernos y de la vasta industria electrónica que se ha desarrollado durante este siglo.
No hay comentarios:
Publicar un comentario